

CARRIER'S DIGITAL SOLUTIONS

Christine Mueller
Digital Solution Growth Leader for North America

Agenda

- Carrier Service Connected capabilities
- Abound as the industry is evolving, we have a solution!
- Digital service capabilities
- Abound Net Zero Management dashboards and reports

SOLUTIONS THAT MATTER. CONFIDENCE THAT INSPIRES.

Carrier is the leading global provider of healthy, safe, sustainable and intelligent buildings!

Let's discuss how we are digging deeper into equipment and building data than ever before to...

- Put our customers first
- Protect our planet
- All while inspiring and empowering our people.

Industry Challenges Needing a Solution

BUILDINGS OF YESTERDAY

BUILDINGS OF TOMORROW

The Problem

Impact of HVAC operations

Building energy consumption ~40% energy use by HVAC

Energy efficient buildings affect health HEALTHfx Study: \$5.8 bn in health and climate benefits (2000-16)

Energy efficient buildings affect productivity COGfx study: Enables ~26% higher cognitive scores

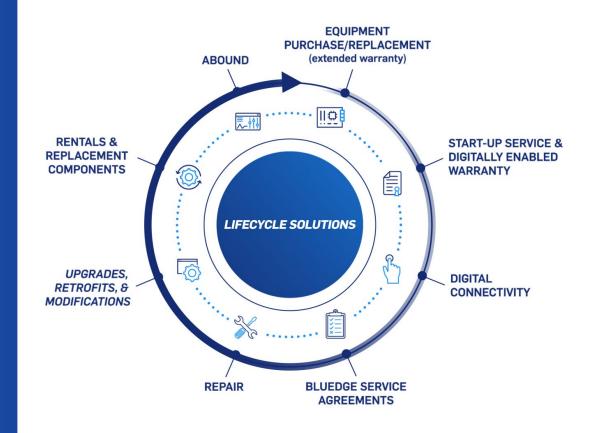
Complexity in optimizing HVAC O&M

Multi-disciplinary technologies

Multiple brands of equipment

Numerous O&M processes

Different personas involved


Digital and AI can be used to overcome the complexity involved

Our Service Mission Is to be your one-stop-shop across your HVAC lifecycle

- Provide you with **best-in-class service** as the leading OEM for Building Controls and commercial HVAC equipment
- Be your #1 partner in implementing intelligent climate solutions
- Offer next-gen digital capabilities for greater visibility into building system health and performance

Service & Aftermarket Scope

Operations & Maintenance

- BluEdge Service Agreement
- Abound HVAC Performance platform
- Chiller plant operations
- Value-added services
- Technical training

Repair & Upgrades

- Emergency repair
- Chiller overhaul
- VFD retrofits

Parts & Rental

- Chiller & pump rental
- Emergency response
- Spare parts

Retrofit & Solutions

- Health check
- Plant optimization / BMS
- Performance guarantee
- Modernization / upgrades

We have an extensive experience servicing major heating, ventilation and cooling manufacturer's equipment.

AIR & WATER-COOLED CHILLERS, PACKAGED UNITARY EQUIPMENT, AIR HANDLING UNITS, COOLING TOWERS, BUILDING CONTROLS, HEAT EXCHANGERS, BOILERS, SPLIT SYSTEMS, PUMPS, VARIABLE REFRIGERANT FLOW (VRF)

Abound – Digital Platform

Carrier's Suite of Connected Solutions

Gathers performance data from disparate systems, equipment, and sensors, so you have a single source of truth for making quick assessments and confident decisions.

Visualize

Provides a clear view of all your building systems—across your entire building portfolio—in one intuitive interface

Analyze

Unites disparate data and identifies anomalies in real time, so you can resolve issues quickly

Optimize

Provides actionable insights and recommended solutions so you can...

take action to make buildings more efficient, comfortable, and sustainable and provide occupants with increased confidence in their indoor environments

What is Abound?

Abound Healthy Air

Customer Problem How do I optimize my building for the health and productivity of its occupants?

Customer Problem

Abound Occupant Assistant


How do I enhance the productivity of my workforce or increase tenant experience?

Customer Problem

Abound Net Zero Management

How do I optimize my HVAC and energy systems to reduce energy consumption and ensure alignment to our ESG goals?

Customer Problem

Abound HVAC Performance

How do I maximize HVAC uptime, limit maintenance issues, and reduce unplanned repairs?

Abound Predictive Insights

Customer Problem

How do I enhance building asset management for cost reduction, comfort improvement, and advanced data analysis?

More in development...

DIGITAL SERVICE CAPABILITIES

What it means to Connect with Carrier

24/7 Continuous Monitoring of your Equipment

Enabled by multiple Carrier Command Centers around the world

Alarm Monitoring, Notifications, and Remote Diagnostics

Real-time notifications on critical/high-risk alarms with proactive measures*

Analytic Reports and Proactive Insights

Periodic reports containing predictive insights to help prevent major failures

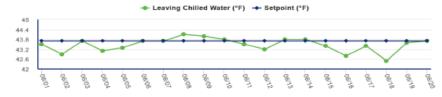
Chiller Reports

Digital Health Report

Chiller Design

A	Cambant	Tadass
AVO.	Comfort	Tudex

Min. Index	Max. Index
x	99.42
0	100%
Run Hours this period	
Total Run Hours	109.0
Min. Daily Runtime (hrs)	2.0
Avg. Daily Runtime (hrs)	5.5
Max. Daily Runtime (hrs)	7.0
Number of start/stops	392


Chiller Performance Summary

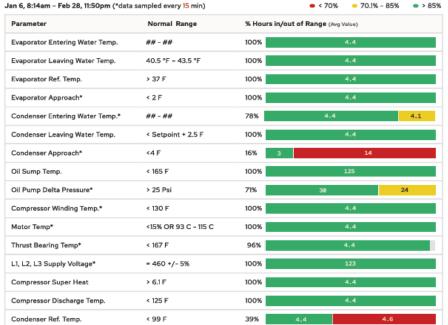
Avg. Chiller Capacity	21.5 %
Total Run Hours (Life Time)	3006
Avg. Setpoint	43.7 °F
Avg. Entering Chilled Water Temp	50.5 °F
Avg. Leaving Chilled Water Temp	43.5 °F
Avg. Outdoor Air Temp	53.7 °F
Max. Outdoor Air Temp	62.0 °F
Min. Outdoor Air Temp	48.4 °F

Alert/Alarm Summary

0
100.00%
0.00%
0.00%

Leaving Chilled Water And Setpoint

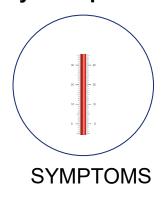
This summary report is intended to provide an overview of your chiller's performance and operating results. Contact your Carrier Service representative for additional guidance, details, optimization strategies or service recommendations.


Digital Inspection Report

Chiller Operation Check

Operation check was done when CH-01 was running at greater than 90% load which occured for 200 hours.

Jan 6, 8:14am – Feb 28, 11:50pm	(*data sampled every 15 min)	


Alarm Summary

Categ	jory	Quantity	Action by Carrier
Alert		2	0
	le	1	1
		3	3

Most Recent Alarm and Alert			
Description	Time	Туре	Text
Starts limit exceeded	Feb 12, 4:45 PM	Prestart Alert	Excessive compressor starts (B in 12 hours)
High motor temperature	Feb 26, 12:45 PM	Prestart Alert	Comp Motor Winding Temp

Chiller Analytic Reports

Each Analytic Report Focuses on Three Main Areas

Evaporator Health Example:

Symptoms:

- > High Evaporator Approach.
- > Low Evaporator Refrigerant Pressure.
- ➤ Low Evaporator Refrigerant Temp
- Increased Pressure drop in the evaporator water circuit.

Degradation & Severity:

- Decreased Efficiency.
- > Decreased heat transfer rate
- Increased evaporator degradation factor.

Energy & Cost Effect

- > Increased Chiller power consumption.
- Reduction in capacity impacting the leaving ChWT.

Types of Analytic Reports

Water Cooled Analytic Reports

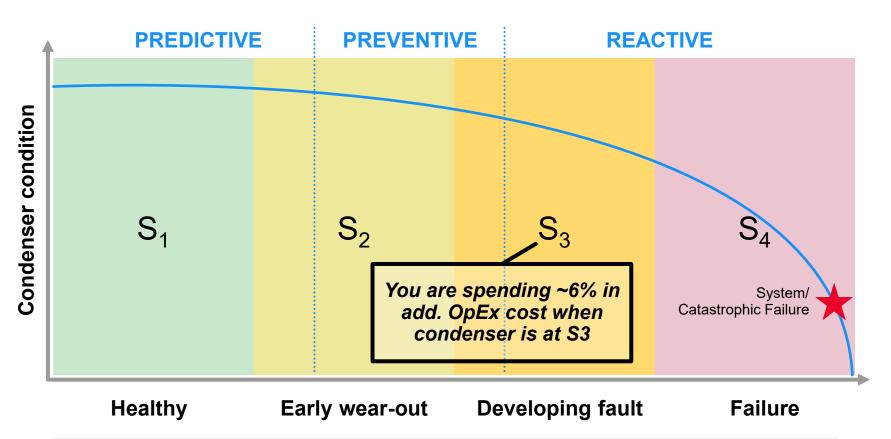
- Condenser Health
- 2. Chiller Refrigerant leak
- 3. Compressor Health (Centrifugal)
- 4. VFD Report
- 5. Evaporator Health
- Electrical Health

Air Cooled Chiller

- 1. Chiller Refrigerant leak
- 2. Condenser Coil Health
- Condenser Health (Chemical / steam cleaning)
- 4. Evaporator Health

More Under Development!

- . Compressor Health (Screw)
- 2. Annual Shutdown
- 3. VFD Health
- 4. Condenser Tube Replacement
- 5. PIC 6 Upgrade (19 Series)
- 6. PIC 6 Upgrade (From touch pilot and HMI)
- 7. PIC6 Upgrade (From ProDialog)
- 8. Auto tube cleaning (Ball / Brush type)
- 9. Motor Terminal Replacement*
- 10. Revarnish Stator Coil*
- 11. Control Power Transformer Replacement*
- 12. Chiller Replacement Planning
- 13. Chiller Plant Recommendations

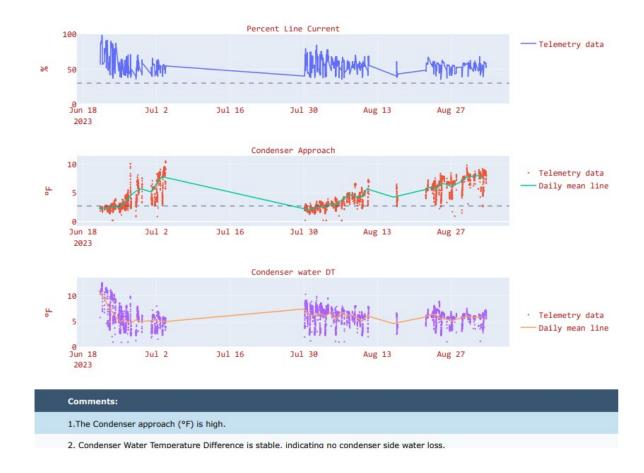

- 1. Compressor Health (single)
- 2. VFD Health
- 3. Evaporative Cooling Upgrades
- 4. Annual Shutdown
- 5. Condenser Fan VFD
- 6. PIC6 Upgrade (HMI display)
- 7. Anti Corrosion coating
- 8. Electrical Health
- 9. Motor Terminal Tube Replacement
- 10. Revarnish Stator Coil
- 11. Control Power Transformer Replacement
- 12. Chiller Replacement Planning

Analytic Reports for Operational Savings!

EXAMPLE - CONDENSER FOULING | Condenser fouling is one frequently observed example where we can save you money

Early detection through **Digital Inspections**

Leads to minimizing operating cost and reducing chance of catastrophic failure

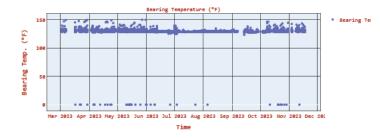


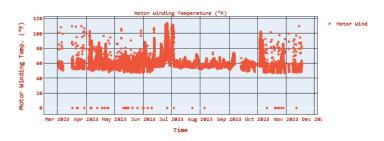
HVAC Performance Analytics in Action

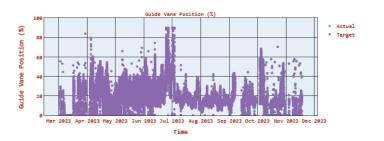
Condenser Health Report

- Degradation is the primary metric which is considered to determine the efficiency of the chiller.
- The review of operating experience indicated that chillers experience aging degradation and failures.
- The primary aging factors of concern for chillers include vibration, excessive temperatures and pressures, thermal cycling, chemical attack, and poor-quality cooling water.

©2024 Carrier. All Rights Reserved.

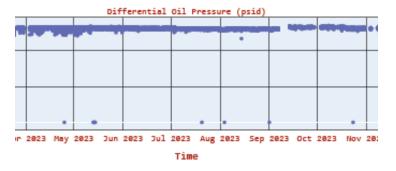

Compressor Health Report

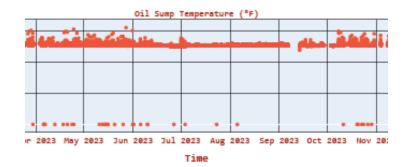

COMPRESSOR HEALTH REPORT



CHILLER DETAILS		
Location Name	Penn State St Joes Hospital	
Site Address (Region)	2500 Bernville Rd, Reading, PA 19605	
Chiller Number	3805Q71730	
Year of Manufacturing	2005	
Chiller Runhours	75259	
Model Number	19XR7071555EJS64S	
Report Duration	2023-03-01 to 2023-11-17	
SUMMARY		
Performance Factor (%)	Inefficient	
Surge Counts	No surge counts	
Oil PD	Normal	
Oil Sump Temperature	Normal	
Bearing Temperature	Normal	

COMPRESSOR PARAMETERS


COMMENTS


factor indicates that the compressor is not operating efficiently.

using performance factor is to evaluate degradation of performance over time

ication of the degradation is evaluated in the next section.

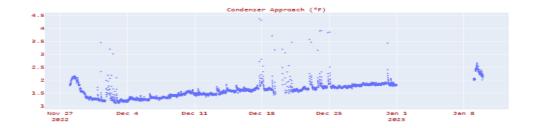
OIL CIRCUIT ANALYSIS

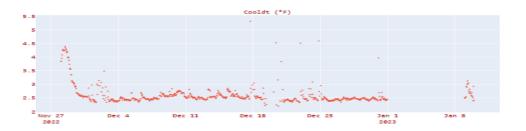
©2024 Carrier. All Rights Reserved.

Refrigerant Leak Report

Additional Report Inferences

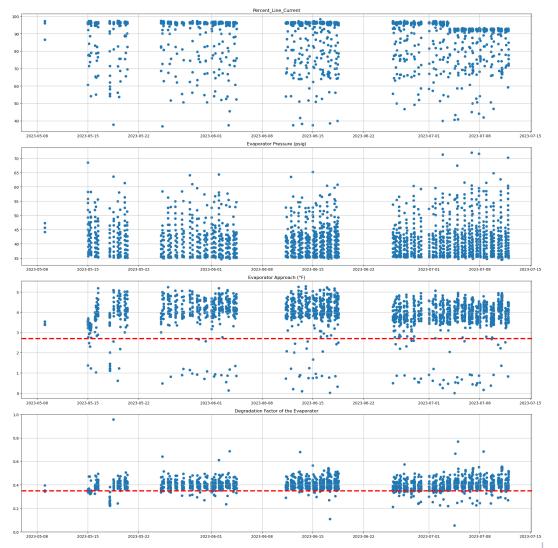
EVAPORATOR DEGRADATION FACTOR




Comments

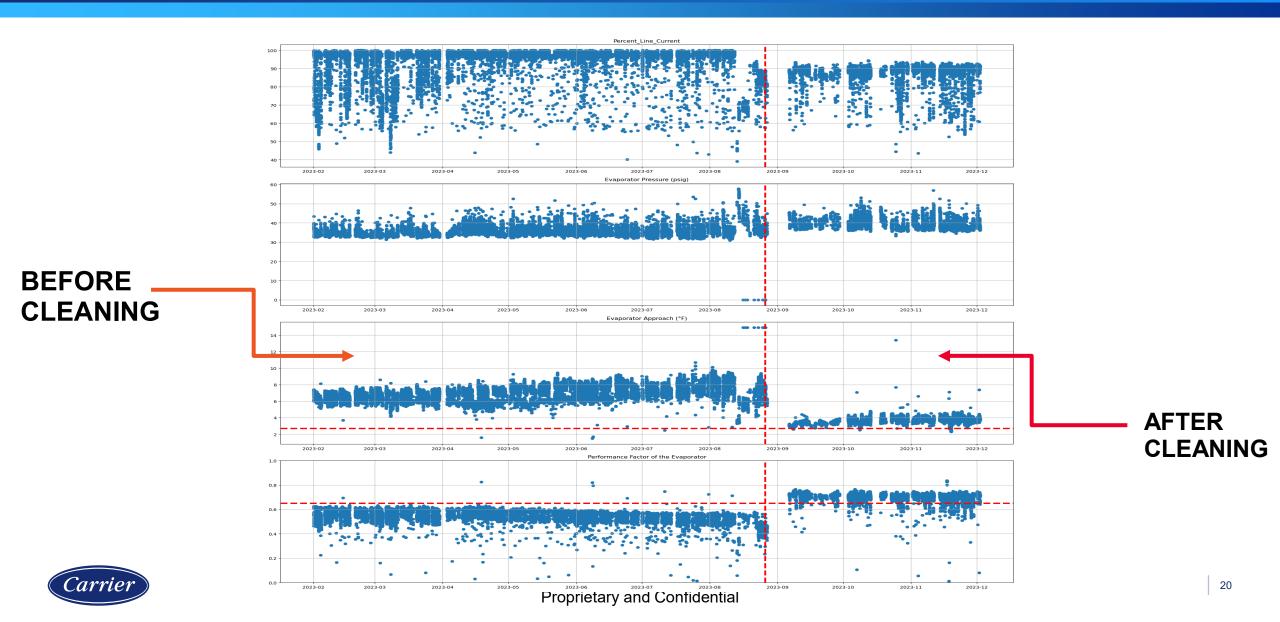
The Evaporator Degradation factor has increased.

- Degradation is the primary metric which is considered to determine the efficiency of the chiller.
- The review of operating experience indicated that chillers experience aging degradation and failures.
- The primary aging factors of concern for chillers include vibration, excessive temperatures and pressures, thermal cycling, chemical attack, and poor-quality cooling water.
- Evaporator effectiveness indicated ability to absorb or transport the heat.

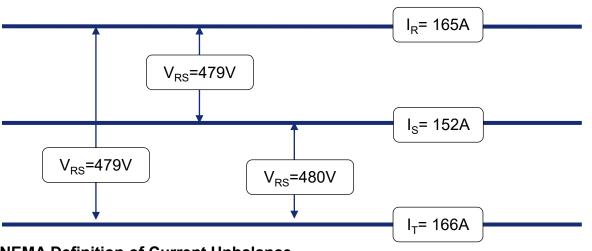

COMMENTS

- . There was a decreasing trend in the evaporator pressure
- 2. The evaporator approach was high
- 3. The condenser approach had an increasing trend.
- 4. The leaving chilled water temperature is steady over the time.
- 5. The fault belongs to S3 category

Evaporator Health Symptoms


- ➤ The **evaporator approach** is **high** and reflects a value above 3°F.
- ➤ The **degradation factor** of the evaporator is **high** with a value greater than 0.35.
- > The evaporator pressure is showing a decreasing trend.
- The chilled water temperature difference is stable, indicating no water loss.

Field	Record
Chiller Business Key	45QQ6
Report Duration	2022-11-01 to 2023-07-11
Chiller Model Number	19XR-PIC3



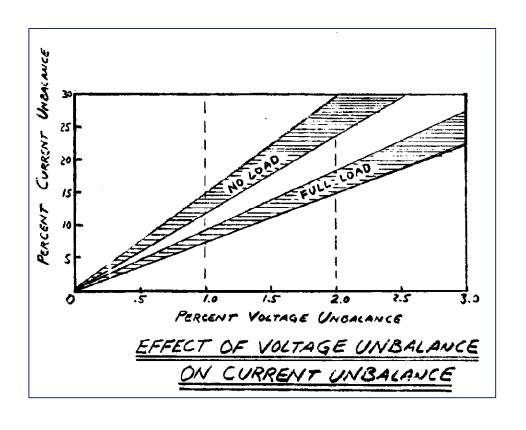
Field Verified Case Study: Chiller XR3

Electrical Health (Unbalance)

An example

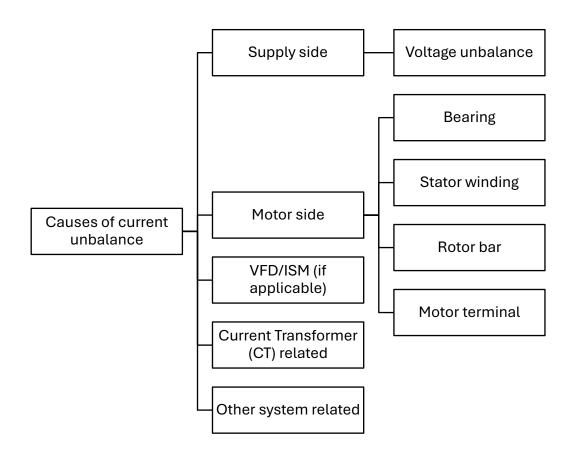
NEMA Definition of Current Unbalance

$$I_{avg} = (165 + 152 + 166) / 3 = 161$$


Current Unbalance (I_U)= 5.59%

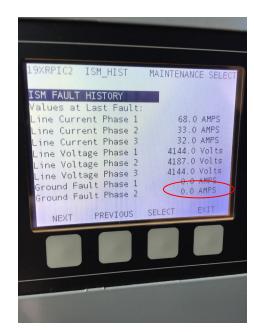
Maximum deviation from mean

 $= \max\{|4|, |-9|, |5|\}$


= 9

Current Unbalance (I_{II}) = (9/161) *100 = 5.59%

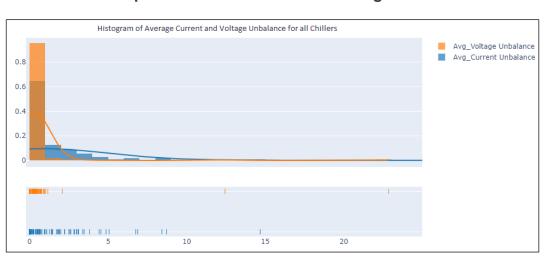
What Causes Current Unbalance?


Broken connections

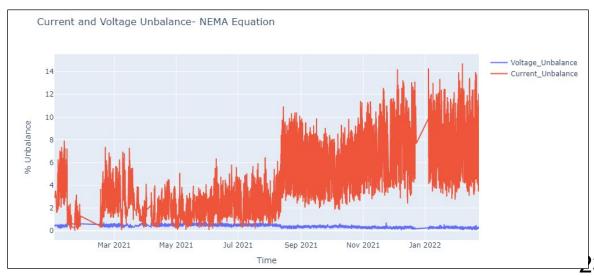
Insulation failure

Winding Damage

An example of ~53% current unbalance while voltage unbalance is <1%.



Detection Method


Step-1: Pick chillers with all three-line voltage and current in telemetry

Subsystem	Causes	Variables in telemetry data
Supply side	Voltage unbalance	Line_Current_Phase_1 Line_Current_Phase_2 Line_Current_Phase_3 Line_Voltage_Phase_1 Line_Voltage_Phase_2 Line_Voltage_Phase_3 Percent_Line_Current
	Bearing	Bearing_Temp
Motor side	Stator winding	Comp_Motor_Winding_Temp
Motor side	Rotor bar	-
	Motor terminal	-
VFD (if applicable)	-	vfdFaultCode

Step-2: Calculate current and voltage unbalances

Step-3: Identify chillers with abnormal current unbalance

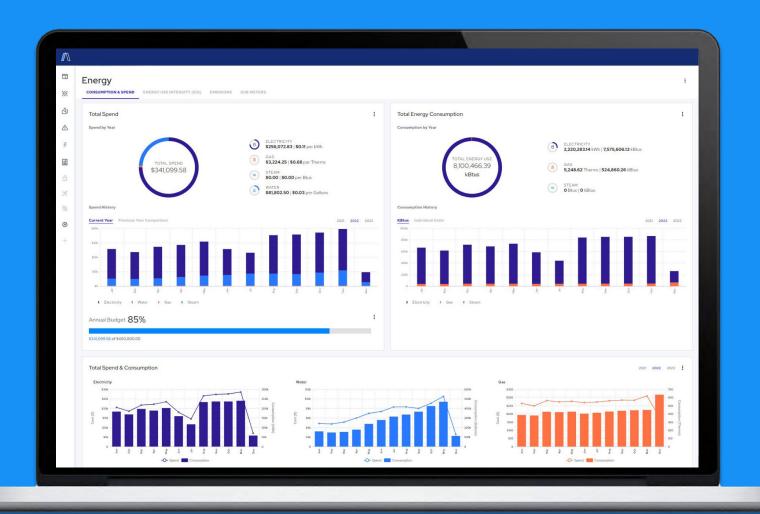
HOW CONNECTIVITY WORKS

How it Works

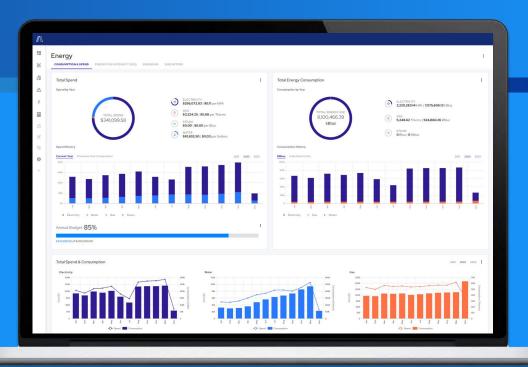
- 1. Chiller is connected
- 2. Carrier IoT platform stores and trends equipment data
- 3. Carrier Command Center provides continuous monitoring of connected chillers. Monitors for critical alarms and connection status.
- 4. Handoff process Customized with you and your local Carrier service team.

Nearly 40,000 chillers connected globally, with another 25,000 up for connection in 2024

How It Works?


- Connects outside your network
- Connects outside your Building Automation System

NET ZERO MANAGEMENT

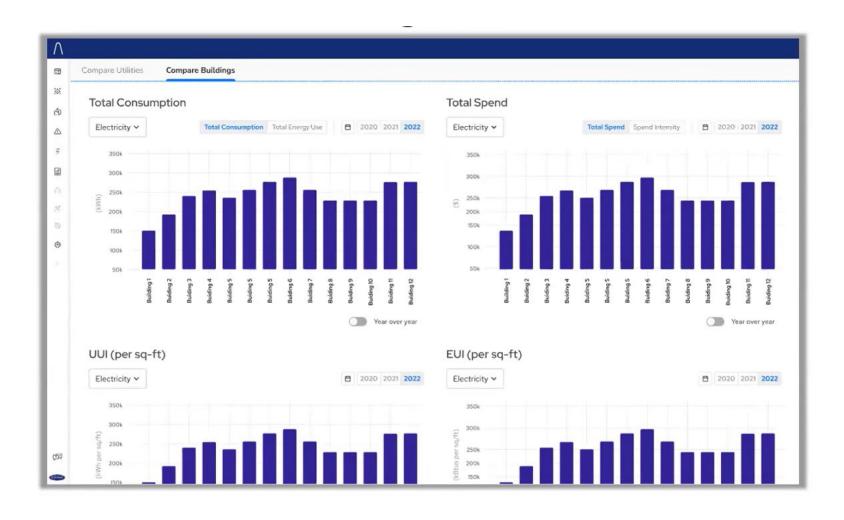

TRACK AND ANALYZE MONTHLY ENERGY USE

NET ZERO MANAGEMENT

TRACK AND ANALYZE MONTHLY ENERGY USE

Abound Net Zero Management Value

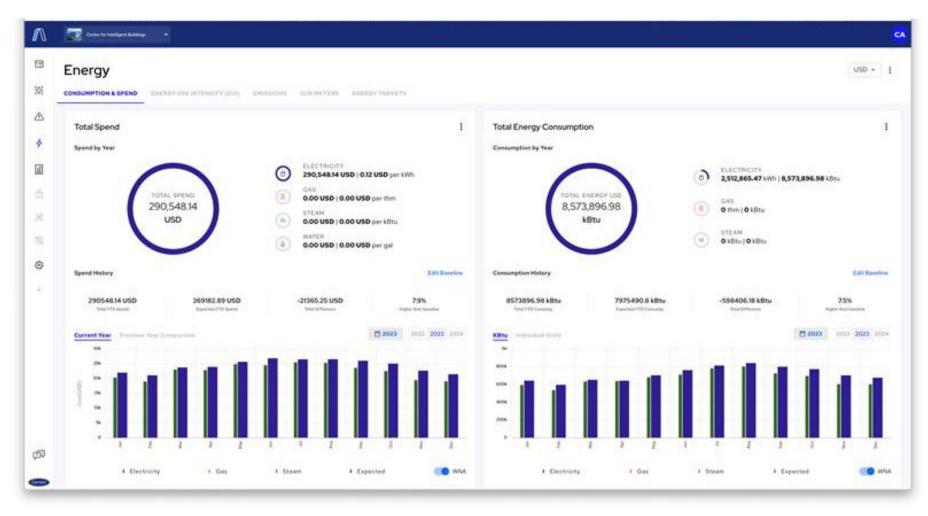
Outcomes Delivered


- Track and analyze monthly energy use
- Benchmark your goals. Compare before/after for major projects and renovations
- Compare against Energy Star
- Proactively identify conservation measures
- Automatically calculate and convert energy usage data to GHG emissions
- Report Greenhouse gas Emissions
- Enable Measurement & Verification

Savings Realized

- Increase productivity by quickly and easily reporting and archive Energy Usage and Net Zero information
- Identify poorly performing buildings
 - Water
 - Electric
 - Gas
 - Steam
- Decrease Energy Consumption
- Identify poorly performing assets for energy reduction strategies

Portfolio View



- View and Evaluate across your building portfolio
- Total use intensity
- Compare total consumption across buildings
- How much energy is used per square foot
- Where might you need a more in-depth building audit?

©2024 Carrier. All Rights Reserved.

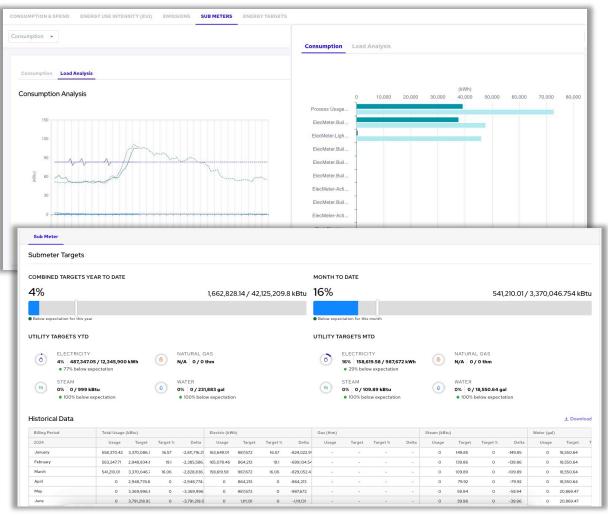
Isolate weather's impact on energy analysis

Measure

 View typical costs of building energy data vs. affects of external weather conditions, like changes in temperature, humidity, etc.

Evaluate

- Compare HVAC equipment energy performance across a portfolio of buildings over time
- Calculate avoided costs to better track your performance


Take Action

 Optimize HVAC systems to improve overall energy performance

Utilize submeter data to analyze energy costs

Measure

View real time energy performance and identify trends with precision monitoring

Evaluate

• Benchmark energy usage within buildings or across portfolios

Take Action

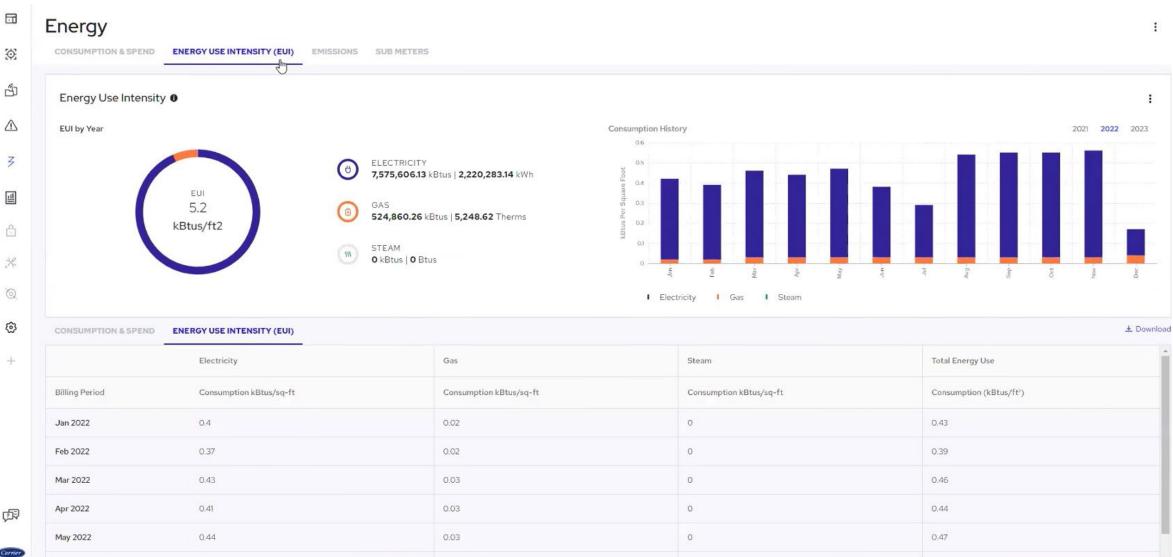
- Create custom dashboards and reports; improve compliance and reporting
- Optimize HVAC systems to improve energy performance and reduce costs

Measure

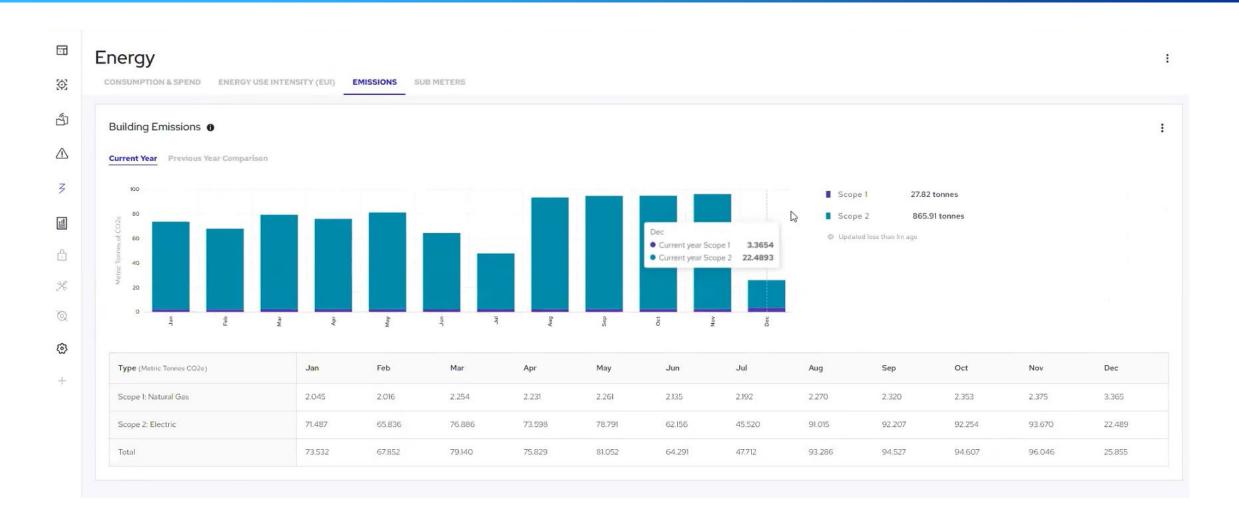
- Set annual building performance targets
- Identify when over or under monthly and yearly budget goals

Evaluate

 Track energy conservation goals vs. compliance with performance standards, external benchmarks, or budgets


Take Action

Optimize HVAC systems to improve overall energy performance



Energy Use Intensity

Emission Data View

©2024 Carrier. All Rights Reserved.